Investigação dos genes bla_{KPC} e bla_{NDM} em entrobactérias recebidas em um laboratório de saúde pública

Investigation of bla_{KPC} and bla_{NDM} genes in enterobacteriaceae received in a public health laboratory

Laisla Zanetoni Martins¹, Elisabete Cardiga Alves¹, Denise Fusco Marques¹, Ana Paula Lemos¹, Fernanda Modesto Tolentino Binhardi¹, Marcia Maria Costa Nunes Soares¹, Milena Polotto de Santi¹

RESUMO

Introdução: A produção de carbapenemases dos tipos KPC e NDM é um importante mecanismo enzimático de resistência aos carbapenêmicos em bactérias da família Enterobacteriaceae. Estas enzimas degradam os antibióticos beta-lactâmicos e são codificadas pelos genes bla_{KPC} e bla_{NDM} que podem estar localizados em elementos genéticos móveis como plasmídeos e transposons. Objetivos: Avaliar a taxa de positividade de bla_{KPC} e bla_{NDM} em enterobactérias resistentes aos carbapenêmicos recebidos no Instituto Adolfo Lutz (IAL) de São José do Rio Preto e pesquisar dados epidemiológicos dos pacientes cujos isolados foram recuperados. Métodos: No período de junho de 2015 a abril de 2019 foram recebidos isolados bacterianos resistentes aos carbapenêmicos da região de São José do Rio Preto. No laboratório de bacteriologia e biologia molecular foram realizadas a extração de DNA e a PCR em tempo real para investigação dos genes bla_{KPC} e bla_{NDM}. Em seguida, foi feito o levantamento dos dados epidemiológicos, tais como, o município de origem, idade e gênero dos pacientes cujos isolados bacterianos foram recuperados. Resultados: A amostragem total do estudo foi de 934 isolados de enterobactérias provenientes de diferentes hospitais localizados em cinco municípios da região. Destes; 93,4% foram positivos para bla_{KPC} sendo 96,3% em isolados do gênero Klebsiella sp. e 1,85% dos isolados do gênero Enterobacter sp. e da espécie Escherichia coli, respectivamente; 52,5% dos isolados foram obtidos de mulheres e 84,4% de pacientes idosos. O gene bla_{NDM} foi detectado apenas em três isolados, sendo dois deles provenientes de culturas de vigilância. Conclusão: Os resultados gerados evidenciaram que enterobactérias produtoras de KPC estão disseminadas em todas as unidades de saúde dos cinco municípios estudados, sugerindo que os isolados de Klebsiella sp. carreadores de bla_{KPC} possam ser endêmicos nestas instituições. Podemos também notar o importante papel das culturas de vigilância na prevenção da disseminação de genes de resistência, como observado para bla_{NDM} neste estudo.

Palavras-Chave: Infecções Bacterianas; Carbapenêmicos; Farmacorresistência Bacteriana.

ABSTRACT

Introduction: KPC and NDM carbapenemases production is an important enzymatic mechanism of resistance to carbapenens in bacteria belonging to the Enterobacteriaceae family. These enzymes degrade virtually all beta-lactam antibiotics and are encoded by the bla_{KPC} and bla_{NDM} genes, which can be in mobile genetic elements such as plasmids and transposons. Objectives: This study evaluated the positivity rate of the presence of bla_{KPC} and bla_{NDM} genes in carbapenem-resistant enterobacteria received at the Instituto Adolfo Lutz (IAL) of São José do Rio Preto, Brazil and determined the epidemiological data related to the patients whose isolates were recovered. Methods: From June 2015 to April 2019, bacterial isolates were obtained from different hospitals located in five municipalities in São José do Rio Preto region. In the bacteriology and molecular biology laboratory, DNA extraction and real-time PCR were performed to investigate the bla_{KPC} and bla_{NDM} genes. Afterwards, epidemiological data were surveyed such as the municipality of origin, age, and gender of the patients whose bacterial isolates were recovered. Results: A total of 934 enterobacteriaceae isolates were recovered from the different hospitals. Of these; 93,4% were positive for bla_{KPC} with 96.3%, 1,85%, and 1,85% of the isolates belonged to the Klebsiella genus, Enterobacter genus, and Escherichia coli species, respectively. Also, 52,5% and 84,4% of the isolates were obtained from women and elderly patients, respectively. The bla_{NDM} gene was detected only in three isolates, two of which originated from surveillance cultures. Conclusion: Therefore, KPC-producing enterobacteria are widespread in all health units of the five municipalities that were studied, suggesting that the blaKPC-carrying Klebsiella sp. isolates may be endemic in these institutions. Additionally, there is a significant role of surveillance cultures in preventing the spread of resistance genes, as observed for bla_{NDM} in this study.

Keywords: Bacterial Infections; Carbapenems; Drug Resistance, Bacterial.

INTRODUCTION

Healthcare-associated infections are defined as infections that manifest themselves during hospitalization or after discharge. These infections represent a serious global public health issue, as they lead to longer hospitalization, higher
healthcare costs, and increased morbidity and mortality rates1-2.

Members of the Enterobacteriaceae family, mainly the species Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli, are well-known on account of their high capacity to acquire resistant mechanisms as well as their frequent association with severe opportunistic infections in hospitalized patients, mainly in immunosuppressed individuals with underlying diseases such as wounds, intra-abdominal infections, urinary tract infections and sepsis3-4.

Carbapenems are a class of antimicrobial agents reserved for infections caused by multidrug-resistant microorganisms. However, resistance to carbapenems has increased. It is becoming a serious public health threat, representing a major limitation in establishing effective antimicrobial therapy5. This type of antimicrobial resistance is spreading at an alarming rate, resulting in major outbreaks and treatment failure of community-acquired and nosocomial infections caused by the clinically relevant carbapenem producing Enterobacteriaceae6.

Two particularly important carbapenemases in Enterobacteriaceae are encoded by the genes bla\textsubscript{KPC} (Klebsiella pneumoniae carbapenemase) and bla\textsubscript{NDM} (New Delhi Metallo-\(\beta\)-lactamase-1). The first report of the bla\textsubscript{KPC} gene occurred in the United States, in 1996, in a K. pneumoniae isolate, while the first report was in Recife, in 20097.

The bla\textsubscript{NDM} gene was first reported, in 2009, in New Delhi (India), from K. pneumoniae8; this gene is common in the Enterobacteriaceae family and has been detected in several species such as Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae9. In Brazil, the first cases of NDM-1 infection and colonization were confirmed at the Conceição Hospital in Porto Alegre, Brazil, where five patients were infected or colonized between September 2012 and April 201310.

The objectives of this study were to evaluate the positivity rate of bla\textsubscript{KPC} and bla\textsubscript{NDM} genes in all carbapenem resistant bacterial clinical isolates received at the IAL of São José do Rio Preto from June 2015 to April 2019. Afterwards, we determined the species, city of origin, age, and gender of the patients who were infected with the carbapenem resistant bacterial clinical isolates.

METHODS

Selection of Isolates

Resistance to at least one carbapenem antibiotic was the criterion for receiving the studied isolates at the Adolfo Lutz Institute between June 2015 and April 2019. These isolates were obtained from five hospitals from the largest city, São José do Rio Preto (around 460,000 inhabitants) and from hospitals of nearby cities such as Catanduva, Votuporanga, Fernandópolis, and Jales, with an estimated population of 122,000, 95,000, 69,000, and 49,000 inhabitants, respectively. The bacterial isolates were recovered from positive cultures of several clinical specimens, such as blood, urine, tracheal aspirate, bronchoalveolar lavage, biopsy tissue fragments, and catheters. We received the bacterial isolates already identified from the origin hospital, and to check the species identification, we carried out the biochemical tests in our institute. This study was approved by the Research Ethics Committee (number 26144619.4.0000.0059).

DNA Extraction

DNA extraction was performed using a boiling protocol in which colonies of a recent pure culture (up to 24 h) grown on PROBAC MacConkey agar, TSA, or blood plates were selected and resuspended in 500 µL sterile water in a 1.5 mL tube, vortexed, and then incubated at 95–99°C for 10 min. This mixture was heat shocked on ice for three to five minutes and then centrifuged at 16.1 rcf for three minutes. After centrifugation, the supernatant was collected.

Detection of bla\textsubscript{KPC} and bla\textsubscript{NDM} genes by real time PCR

The investigation of bla\textsubscript{KPC} and bla\textsubscript{NDM} genes was performed by the multiplex real-time PCR method using the primers and protocol from the Centers of Disease Control (USA)11. The cycling conditions for qPCR were initial enzymatic activation at 95°C for three minutes, followed by 40 cycles of 95°C for 3 seconds, annealing, and then extension at 60°C for 3 seconds.

RESULTS

A total of 934 carbapenem-resistant enterobacteria isolates were received from health services or hospitals located across five cities in the Northwest of São Paulo state. Most of these isolates (\(n = 887\), 89.32\%) belonged to the Klebsiella genus, with K. pneumoniae being the most frequent species (\(n = 857\), 91.55\%), followed by Enterobacter sp. (\(n = 32\), 3.42\%) and Escherichia coli (\(n = 17\), 1.82\%).

KPC Results

Of the 934 patients considered cases; 93.4\% of the isolates (873/934) were positive for bla\textsubscript{KPC}, with 96.3\% (841/873), 1.85\% (16/873), and 1.85\% (16/873) of the isolates detected in Klebsiella sp., Enterobacter sp. and Escherichia coli, respectively. It was observed that the K. pneumoniae specie presented the highest positive rate, corresponding to 93.2\% (814/873).

Table 1 (below) reports the characteristics of patients with bla\textsubscript{KPC} carriers. The highest proportion of the isolates came from patients admitted in hospitals located at São José do Rio Preto and Catanduva (the two most populous cities), followed by Votuporanga, Jales, and Fernandópolis. As expected, the positivity rate of bla\textsubscript{KPC} was higher in isolates from the most populous cities, except for Jales, which presented a larger number of bla\textsubscript{KPC} isolate carriers when compared to Fernandópolis.
Many of the isolates were from females (52.5%); while 80.3% were from individuals older than 60 years. The most frequent clinical specimens were urine (n = 317, 36.3%), followed by tracheal aspirate (n = 181, 20.73%), secretions (n=117, 13.4%) and others (Table 1).

NDM Results

The bla_{KPC} gene was detected in three isolates, all derived from São José do Rio Preto. Two isolates belonged to the Klebsiella pneumoniae specie, one of them originated from a swab biopsy collected of a 69 years old woman in 2018 and, the other, from a surveillance swab collected of a 60 years old man in 2017. The remaining isolate belonged to the Escherichia coli specie, being originated from a surveillance swab collected of a 70 years old man in 2016.

DISCUSSION

In this study, the bla_{KPC} gene was widespread in all the studied cities. They are the main cause of carbapenem resistance in the majority of the Enterobacteriaceae isolates. These results have corroborated with the data published from several other Brazilian institutions. The K. pneumoniae specie corresponded to the majority of the bla_{KPC} gene carriers, followed by Escherichia coli and Enterobacter cloacae, as reported in other studies worldwide. Similar results were found in a study carried out in Belo Horizonte, in which most of the infections were caused by KPC carrying Klebsiella pneumoniae.

The high prevalence of the bla_{KPC} gene is a major concern owing to the KPC enzyme, which has the capacity to inactivate carbapenems and other extended spectrum beta-lactams, such as cephalosporins; thus, causing a significant decline in treatment options for the patients, leading to prolonged hospitalizations and increased mortality rates. In addition, this gene has a high potential for dissemination via mobile genetic elements, and high mortality rates have been associated with infections caused by KPC-producing isolates. These data showed the need for the adoption of better control measures, such as isolation of the infected patient, adequate hand washing, and disinfection of the environment to avoid the dissemination of bla_{KPC}.

To the best of our knowledge, this is the first study that has collected data on antimicrobial carbapenem resistance profiles and positivity rates of bla_{KPC} and bla_{NDM} genes in clinical isolates from the cities of Catanduva, Votuporanga, Jales, and Fernandópolis. In addition, it is the first report on bla_{KPC} in hospitals located in these cities, showing important and relevant epidemiological data for this region.

This study found high rates of the bla_{KPC} gene in elderly people, showing that this population needs additional care due to their vulnerability. A study conducted in a Brazilian hospital showed that old age and the use of mechanical ventilations were potent risk factors in the dissemination of KPC. Other studies have also defined age-dependence along with mechanical breathing, heart disease, impaired functional status, cancer, and admission to intensive care units (ICUs) as risk factors for mortality due to infections by K. pneumoniae-KPC.

Throughout the study period, the bla_{NDM} gene was detected only three times in different years (2016, 2017 and 2018) in isolates from two different institutions. In this case, it is interesting to observe the importance of surveillance cultures, as two of the bla_{NDM} genes were recovered from surveillance swabs from the same hospital, suggesting that gene dissemination could be contained. We have demonstrated that early detection and notification to surveillance authorities are very important for a rapid response to prevent gene dissemination.

CONCLUSION

In conclusion, KPC bacteria producers are prevalent in our regional hospitals, mainly in isolates of Klebsiella sp. in the five studied cities and that the elderly people were the most affected. Therefore, control measures, especially simple strategies such as ensuring proper hand hygiene by health professionals, are useful in fighting the spread of these pathogens carrying bla_{KPC} resistance genes. In addition, we highlight the importance of surveillance bla_{KPC} _- positive cultures in preventing the spread of resistance genes, similar to bla_{NDM}.

REFERENCES

